GCE

Physics A
Advanced Subsidiary GCE

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations available in SCORIS

Annotation	Meaning
-Tए.	Benefit of doubt given
C-1]	Contradiction
*	Incorrect response
[${ }^{\text {cI }}$	Error carried forward
[II	Follow through
[Wa	Not answered question
\%	Benefit of doubt not given
W-	Power of 10 error
\wedge	Omission mark
	Rounding error ONLY APPLIED ONCE IN THE PAPER; also use as Repeated error
「3F	Error in number of significant figures ONLY APPLIED ONCE IN THE PAPER
\checkmark	Correct response
C	Arithmetic error
5	Wrong physics or equation
1	alternative and acceptable answers for the same marking point
(1)	Separates marking points
reject	Answers which are not worthy of credit

Annotations in detailed mark schemes

Annotation	Meaning
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
()	Answers that can be accepted
-	Words which are not essential to gain credit
ecf	Underlined words must be present in answer to score a mark
AW	Error carried forward
ORA	Alternative wording
	Or reverse argument

Subject-specific Marking Instructions

CATEGORISATION OF MARKS

The marking scheme categorises marks on the MABC scheme
B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: \quad These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent Amarks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a Cmark and the candidate does not write down the actual equation but does correct working which shows that the candidate knew the equation, then the C-mark is given.

A marks: \quad These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Question			Answer	Marks	Guidance
1	(a)		resistivity = resistance \times area (of cross-section)/length	B1	accept equation with resistance as subject allow over for divide by; do NOT allow formula with a word for each symbol
	(b)	(i)	$\begin{aligned} \mathrm{R} & =\rho \mathrm{l} / \mathrm{A}=1.7 \times 10^{-8} / 6.4 \times 10^{-3} \\ & =2.7 \times 10^{-6}(\Omega) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	accept $2.66 \times 10^{-6}(\Omega)$
		(ii)	$\begin{aligned} & \mathrm{P}=\mathrm{I}^{2} \mathrm{R} \\ & =8000^{2} \times 2.7 \times 10^{-6} \\ & =170 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	$\begin{aligned} & \text { select formula; can use } \mathrm{P}=\mathrm{VI} \& \mathrm{~V}=\mathrm{IR} \\ & \text { ecf b(i) } \\ & 173(2.7), 170(2.66) \end{aligned}$
		(iii)	$170 \times 9.0=1530 \mathrm{~W}$ or $170 \times 24=4080 \mathrm{~W}$ $1.5 \times 24=36(\mathrm{~kW} \mathrm{~h})$ $4.08 \times 9=36.7(\mathrm{kWh})$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	ecf b(ii); 1 mark for X 9 or 1 mark for $\times 24$
		(iv)	$36 \times 15=540 \mathrm{p}$	B1	ecf b(iii) 551(36.7), 555 (37)
	(c)		$\begin{aligned} & I=\text { nAev } \\ & 8000=8.4 \times 10^{28} \times 6.4 \times 10^{-3} \times 1.6 \times 10^{-19} v \\ & v=9.3 \times 10^{-5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	select formula correct substitution
			Total	12	

Answer				Marks	Guidance
2	(a)	(i)1	360 (Ω)	B1	
		(i)2	Current	B1	not symbol only; not unit only
		(ii)1	$\begin{aligned} & 1 / 10+1 / 20+1 / 40=1 / \mathrm{R} \\ & \mathrm{R}=5.7(\Omega) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1 / R=0.175 \\ & \text { accept } 40 / 7 \end{aligned}$
		(ii)2	potential difference	B1	accept p.d. or voltage not e.m.f.; not symbol only; not unit only
	(b)	(i)	p.d./voltage must be proportional to current as long as temperature and/or (other) physical conditions remain constant \mathbf{R} line is straight and through the origin	M1 A1 B1	symbols may be used but must be defined
		(ii)1	(same current so) at 0.6 A have $4.5 \mathrm{~V}+4.5 \mathrm{~V}(=9.0 \mathrm{~V})$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	accept resistors in series (so V's add); i.e recognise that at 0.6 A each component has 4.5 V across it.
		(ii)2	add currents so at 3.0 V have $0.2 \mathrm{~A}+0.4 \mathrm{~A}=0.6 \mathrm{~A}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	accept attempt to add currents for 1 mark (i.e. method mark)
		(iii)	thermistor heats up/temperature increases resistance (of thermistor/circuit) decreases (so current rises) temperature/resistance becomes constant (after 2 s) because thermal equilibrium reached	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	max 3 marks accept thermal energy frees more charge carriers/AW accept energy/power/heat in/generated = energy/power/heat out/lost
			Total	15	

Question			Answer	Marks	Guidance
3	(a)	(i)	energy transferred from source/changed from some form to electrical energy; per unit charge (to drive charge round a complete circuit)	M1 A1	allow energy divided by charge
		(ii)	any source has an internal resistance where energy is transferred into thermal energy /lost as heat	B1 B1	there will be 'lost' volts (across the cell when a current is drawn) or $V=E-$ Ir explained
	(b)	(i)	$\begin{aligned} & \mathrm{V}=\mathrm{IR} 1.2=0.2 \mathrm{R} \\ & \mathrm{R}=6.0 \Omega \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	substitution needed to score mark allow 6Ω
		(ii)	$\begin{aligned} & 1.6-1.2=0.4=0.2 r \\ & r=2.0 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	allow 2Ω
	(c)	(i)1	$\begin{aligned} & \mathrm{Q}=\mathrm{It}=0.20 \times 3600 \times 1.5 \\ & =1100 \\ & \text { correct unit, } \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \end{aligned}$	substitution needed to score mark 1080 allow 1 mark max for 0.3 or 18 allow $\mathrm{C}, \mathrm{kC}, \mathrm{A}$ s exception 0.3 A h or 18 A min scores 3 marks
		(i)2	$\begin{aligned} & \text { energy }=\text { QV }=1100 \times 1.2 \text { or } I^{2} R t=0.2^{2} \times 6 \times 5400 \\ & =1320(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	ecf (c)(i)1 substitution needed to score mark 1296(1080) allow 1 mark for 1728 (using 1.6)
		(ii)	I is constant for about 9 to 10 hours because internal resistance remains constant/cell operates at constant emf I falls rapidly/towards zero over last hour or so because cell's/chemical energy is used up (so E falls)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	QWC must have link between observation and reason to score full marks accept r of cell increases causing fall in V or I
			Total	17	

Question			Answer	Marks	Guidance
5	(a)		energy is trapped in pockets/ where the shape or energy does not move along/energy is stored/AW there are nodes/positions of zero amplitude/motion there are positions where there is max. amplitude/antinodes different/adjacent points have different amplitudes/AW all points between nodes in phase/all points in adjacent $\lambda / 2$'s in anti-phase/AW	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	accept any two sensible but different features allow there are nodes and antinodes as 1 marking point penalise displacement for amplitude once only
(b)			incident wave is reflected (at the fixed end of the string) and the reflected wave (or it) interferes/superposes with the incident wave (to produce the stationary wave)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
-	(c)	(i)	points which are the same distance from the nodes will have the same amplitude so \mathbf{Y} (has the same amplitude as \mathbf{X})	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	N.B. some will add \mathbf{Z} stating it is the same distance from the node - these candidates can score the first mark
		(ii)	all points on the string oscillate with the same frequency so \mathbf{Y} and \mathbf{Z} (have the same f as \mathbf{X})	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
		(iii)	all points in alternate segments of the string oscillate in phaselAW so \mathbf{Z} (is in phase with \mathbf{X})	M1 A1	accept e.g. have positive displacement at the same time
			Total	10	

Question			Answer	Marks	Guidance
6	(a)	(i)	gamma rays, u.v., visible/light, i.r., microwaves	B1	two out of five needed for mark
		(ii)	similarity: travel in a vacuum/same speed (in vacuum)/at c/transverse (wave)/can be polarised/caused by accelerating charges/are oscillating electric and magnetic fields difference: different λ, f, (photon) energy	B1 B1	any one for mark NOT can be reflected/refracted/diffracted/interfere,etc. any one for mark
		(iii)	wavelength of X-rays is close to atomic spacing/AW or wavelength of radio waves many/million times the atomic separation maximum/significant diffraction occurs when radiation wavelength ~ spacing (between diffracting planes) within material	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
	(b)		advantage produces vitamin D (in skin cells) disadvantage damage DNA/cause cancer/sunburn, etc.	B1	allow any sensible use, e.g. sterilise equipment, forensic science, disco lighting, etc. NOT tanning, photosynthesis
	(c)	(i)	$2 \times 10^{-10} \mathrm{~m}$	B1	
		(ii)	$\begin{aligned} & \mathrm{E}=\mathrm{hc} / \lambda \\ & =6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 2 \times 10^{-10} \\ & =9.9(5) \times 10^{-16} \\ & \text { number }=1 \times 10^{9} \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Select equation and attempt to apply it ecf (c)(i) accept 1×10^{-15}, i.e 1 SF mark scored for $1 \times 10^{-6} /$ value of E
	(d)	(i)	diode symbol all three components in series	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	allow LED symbol; basic requirement is triangle along wire direction with bar, with or without circle and line through ecf for diode symbol
		(ii)	maximum ammeter reading when aerials in line/parallel zero signal/current when aerials at 90° to each other at 180° same signal/ammeter reading as at 0° quoting $\mathrm{I}=\mathrm{I}_{0} \cos ^{2} \theta$ to indicate variation through 180°	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	accept ammeter reading falls as aerial is rotated accept minimum allow full marks for answers in terms of only ammeter reading or signal strength max 3 out of 4 marking points
			Total	17	

Question			Answer	Marks	Guidance
7	(a)	(i)	photoelectric effect (experiment) or (discrete) counting of gamma rays or Compton effect	B1	NOT the gold leaf/ the zinc plate experiment, etc.
		(ii)	Young's slits (experiment)	B1	accept any interference/diffraction experiment, e.g. using a diffraction grating, a double slit experiment, etc.
	(b)	(i)	φ is the minimum energy required to release an electron from the metal/surface	B1	allow escape from
		(ii)	$\mathrm{KE}_{\max }=\mathrm{hf}-\varphi \text { or } \mathrm{hf}=\varphi+\mathrm{KE}_{\max }$ the straight line equation is $\mathbf{y}=\mathbf{m x}+\mathbf{c}$ (where \boldsymbol{m} is the gradient and c the y-intercept) hence giving $c=(-) \varphi$ and $m=h$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	can be copied from the data sheet
		(iii)1	$\begin{aligned} & \mathrm{h}=32 \times 10^{-20} / 5 \times 10^{14} \text { or } 40 \times 10^{-20} / 6.25 \times 10^{14} \\ & \text { or } 20 \times 10^{-20} / 3 \times 10^{14} \text { etc } \\ & =6.4 \times 10^{-34}(\mathrm{~J} \mathrm{~s}) \end{aligned}$	M1 A1	any sensible attempt at gradient gains 1 mark check that answer is consistent with figures and not just quoted, e.g. 6.7 for third set of data above
		(iii)2	$8.75 \pm 0.25 \times 10^{14}(\mathrm{~Hz})$	B1	tolerance is to within the grid square N.B. SF applies i.e answer must be 9.0 NOT 9
		(iii)3	$\begin{aligned} & \varphi=6.4 \times 10^{-34} \times 8.75 \times 10^{14} \\ & =5.6 \times 10^{-19}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	$\begin{aligned} & \text { ecf (b)(iii)1,2 or ecf b(iii) } 2 \times 6.6(3) \times 10^{-34} \\ & \text { ans }=1 \times 2 ; 5.8 \times 10^{-19}(\mathrm{~J}) \text { if use } h=6.6 \times 10^{-34} \\ & \text { allow use of } \varphi=\mathrm{hf}-\mathrm{KE}_{\max } \text { at }(15,40) \text { for example } \end{aligned}$
			Total	11	

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road

Cambridge
CB1 2EU
OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

